Amateur Radio RF Exposure

2021-Style!

Dan Brown W1DAN

This Talk Based on...

- April 21 talk FCC Radio Frequency Exposure Rules Become Effective on May 3 by Greg Lapin N9GL
 - Chair ARRL RF Safety committee
 - IEEE Committee on Man and Radiation
 - FCC tech advisory council
 - Consultant on RF exposure issues

Also Ed Hare W1RFI

ARRL Lab supervisor

Wrote RF Exposure book in 1998

Who Am I?

- Dan Brown W1DAN
 - A guy with ham antennas in Natick, MA
 - Eastern Mass ARRL Technical Coordinator
 - Wellesley Amateur Radio Society President
 - Works with high-power UHF broadcast (60kW)
 - Learning as we go!
 - (images stolen from the 'net)

RF Exposure is

- Tissue heating due to the exposure of high levels of radio frequency electromagnetic energy.
 - Warms up areas of the body
 - Body may not be able to dissipate the heat
 - May damage tissue if a very high field
- Guidelines were created in 1985 by
 - National Council on Radiation Protection and Measurements
 - IEEE

1998 first FCC exposure rules came into effect 2019 new rules created, but delayed until May 3, 2021

FCC Rules and Guidelines

- FCC Report and Order 19-126
 - Rules for RF exposure (not just Amateur)
 - Created December 2019
 - Approved April 20, 2021
 - Active <u>May 3 2021</u>
- FCC 47CFR parts 1,2, 97
 - Our general regulations
- OET Bulletin 65 and 65B (revised 1997)
 - How to determine RF exposure compliance
 - 'Not just for hams

We need to

- Limit human RF exposure:
 - Stay below a safe threshold
 - Radio Amateurs-Occupational/<u>controlled</u>-higher threshold, shorter time
 - General Population/<u>uncontrolled</u>-lower threshold
 - OLD NEWS!
 - We <u>must evaluate</u> RF exposure and should have documentation available showing compliance.

New FCC RF Exposure Rules

- Harmonizes exposure rules across all services.
 - Biggest change is the <u>categorical exclusion</u> and table are gone.
- Now use a formula-based evaluation.
- Limits for Maximum Permissible Exposure (MPE) <u>have not</u> <u>changed</u>.
- Exemption available
- If within 20cm of body, measured or modeled (i.e. 2M HT)
- Mobile and portable transmitters now included (Car, HTs, POTA, SOTA)
- Must be able to prove your station is safe-repeaters too

Who Must Comply?

- New or changed stations must evaluate and comply by <u>May</u> <u>3 2021</u>.
- Existing stations who had complied under old rules have until <u>May 3 2023</u> to evaluate.
 - Can use existing worksheets and table until May 3 2021 to determine if a station is exempt. Valid until you change your station.
 - If you relied on the categorical exclusion table to avoid performing evaluations, the FCC is giving you 2-years to do an eval.
- ARRL is assisting the FCC to revise these docs and is making tools for us.
- FAQ sheet available.

OET-65B Table-1 GONE-now calculate!

Wavelength Band	Evaluation Required if Power* (watts) Exceeds:	
	MF	
160 m	500	
	HF	
80 m	500	
75 m	500	
40 m	500	
30 m	425	
20 m	225	
17 m	125	
15 m	100	
12 m	75	
10 m	50	
VHF (all bands)	50	
	UHF	
70 cm	70	
33 cm	150	
23 cm	200	
13 cm	250	
SHF (all bands)	250	
EHF (all bands)	250	
Repeater stations (all bands)	non-building-mounted antennas: height above ground level to lowest point of antenna < 10 m and power > 500 W EF building-mounted antennas: power > 500 W ERP	

Table 1. Power Thresholds for Routine Evaluation of Amateur Radio Stations

* Transmitter power = PEP input to antenna. For repeater stations only, power exclusion based on ERP (effective radiated power).

Exemptions

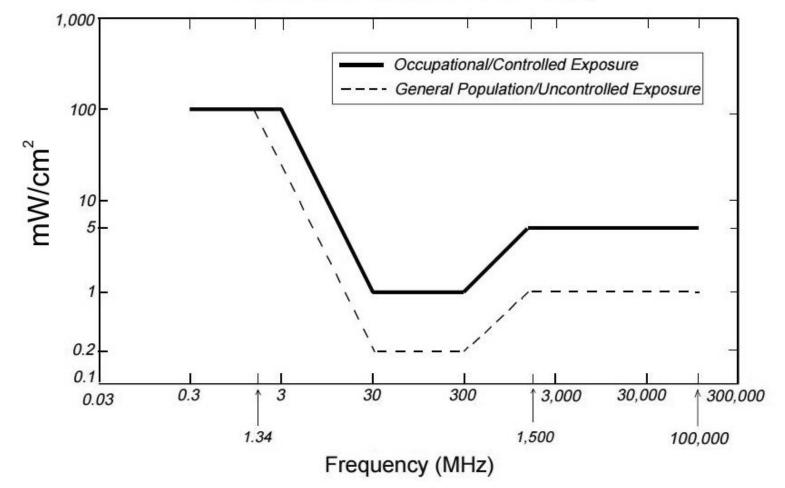
- New <u>exemptions</u> based on frequency, max ERP, distance, and calculating a field strength – If under 1mW, don't bother.
- A new table of exemptions based on frequency, power (at the antenna), and distance from the antenna to the nearest person.
- If you don't qualify for an exemption, you must perform a full exposure analysis.

19-126A1 Table 2

• MPE-based exemptions

Table 2. Single RF Sources Subject to Routine Environmental Evaluation under
MPE-Based Exemptions, $R \ge \lambda/2\pi$

Transmitter Frequency	Threshold ERP			
0.3 - 1.34	1,920 R ²			
1.34 - 30	3,450 R ² /f ²			
30 - 300	3.83 R ²			
300 - 1,500	0.0128 R ² f			
1,500 - 100,000	19.2 R ²			
Note: Transmitter Frequency is in MHz, Threshold ERP is in watts, R is in meters, f is in MHz.				


Maximum Permissible Exposure

- MPE cannot be exceeded-not new!
- Based on Specific Absorption Rate (SAR).
 - RF in body causes heat
 - Varies with frequency
 - Measured in mW/sq-cm
 - Averaged over time
 - 30-minutes for <u>uncontrolled</u> environments (general population)
 - 6 minutes for <u>controlled</u> environments (hams)
 - No reset period

Figure 1. FCC Limits for Maximum Permissible Exposure (MPE)

Plane-wave Equivalent Power Density

Exposure Analysis

- For stations that have not been grandfathered, you now <u>must</u> perform your own exposure analyses by May 3.
- Grandfathered stations may do within 2 years.
- Do not have to submit the results to the FCC.
- If you change your station, redo.
- Documentation not mandated.
- Use any valid method
- If an event occurs, you must show your exposure compliance to the FCC.

You're HOT!

- Human tissue is most sensitive to VHF
 - VHF (2M HT) is worse case
 - Older HT's grandfathered
 - Newer ones need modeling
 - Higher prices?
- SAR is used above 300MHz
 Impractical for hams.

MPE Limits for Occupational/Controlled (hams)

Table 1. LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f ²)*	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500-100,000			5	6

(A) Limits for Occupational/Controlled Exposure

MPE Limits for General-Population/Uncontrolled

(B) Limits for General Population/Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time IEI ² , IHI ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f ²)*	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000			1.0	30
f = frequency in N	4Hz	*Plane-wave equ	ivalent power den	sity

Want to measure your RF field?

- Not accurate due to environment
- NARDA Radman 2XT
 - E-field 900KHz to 60GHz
 - H-field 27MHz-1GHz
 - \$900
 - Others available
 - Not required
 - Most folks will calculate

Modeling

- EZNEC (<u>https://www.eznec.com</u>)
 - Antenna modeling, good for hams (beams)
 - Might be needed for more accurate results
 - Ground-reflections
- SAR
 - Pro
 - Expensive, HTs and cell phones
- FDTD-pro
- FEM-pro

Feedline

- If feedline is matched to antenna, it does not radiate
 - Coax or ladderline
- Just need to determine loss.

OET-65 Equations

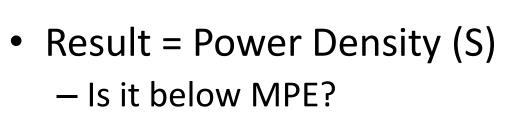
- Allow you to predict your safe field strength
- Result is *power density* at a certain distance from your antenna.
 - Measured in Watts per meter (squared)
- Reasonable determination of RF safety

Hopefully below safe MPE (and SAR)

Power Density Equations

$$S = \frac{PG}{4\pi R^2}$$
 3)

where: S = power density (in appropriate units, e.g. mW/cm²)
P = power input to the antenna (in appropriate units, e.g., mW)
G = power gain of the antenna in the direction of interest relative to an isotropic radiator
R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)


or:

$$S = \frac{EIRP}{4\pi R^2} \tag{4}$$

where: EIRP = equivalent (or effective) isotropically radiated power

OET-65 Formula Variables

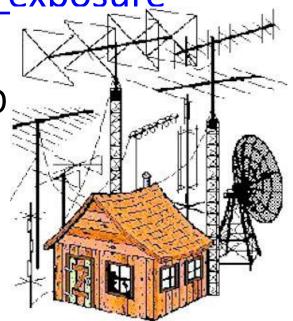
- Distance (R)
- Antenna Gain (G)
- Frequency (MHz)
- Power (W)
- Duty cycle (%)

Duty Cycle

Averaging time can halve the exposure. 30 minute (general population) standard

Operating Duty Cycle of Modes

Mode	Duty Cycle
Conversational SSB	20%
Conversational SSB	40%
SSB AFSK	100%
SSB SSTV	100%
Voice AM, 50% modulation	50%
Voice AM, 100% modulation	25%
Voice AM, no modulation	100%
Voice FM	100%
Digital FM	100%
ATV, video portion, image	60%
ATV, video portion, black screen	80%
Conversational CW	40%
Carrier	100%


RF Exposure Calculators

http://hintlink.com/power_density.htm

<u>http://www.lakewashingtonhamclub.org/resour</u> <u>ces/rf-exposure-calculator/</u>

https://hamradioschool.com/rf-exposurecalculator/

- Easier to use than solving the O by hand.
- Note ERP and Average power

Example-1: 10M-SSB

- 100w PEP SSB radio
- Dipole antenna (unity gain)
- 100-feet of RG58 (2dB loss)
- 10M (28.5MHz)
- Distance 9 meters

Example 1 Values

Calculate Radio Frequency Exposure

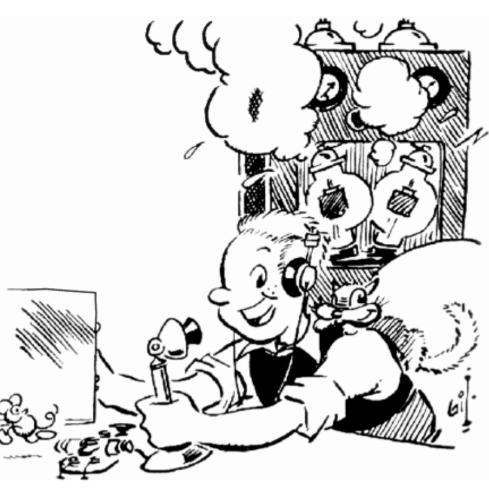
The ERP at the antenna: In watts	62.55
The antenna gain in dBi: Enter 2.2 for dipoles; add 2.2 for antennas rated in dBd	2.2
The distance to the area of interest: From the centre of the antenna, in metres	9
The frequency of operation: In MHz	28.5

Ground Reflection Effects

In most cases, the ground reflection factor is needed to provide a truly worst-case estimate of the compliance distance in the main beam of the antenna. Including the ground reflection effects may yield more accurate results especially with very low antennas, non-directional antennas, and calculations below the main lobe of directional antennas.

Do you wish to include effects of ground reflections? 📀 Yes 🔵 No

FREEDOM!


Calculation Results

Average Power at the Antenna	62.55 watts
Antenna Gain in dBi	2.2 dBi
Distance to the Area of Interest	9 metres 29.53 feet
Frequency of Operation	28.5 MHz
Are Ground Reflections Calculated?	Yes
Estimated RF Power Density	0.0262 mW/cm ²

	Controlled Environment	Uncontrolled Environment
Maximum Permissible Exposure (MPE)	1.11 mW/cm2	0.23 mW/cm ²
Distance to Compliance From Centre of Antenna	1.4 metres 4.58 feet	3.1 metres 10.18 feet
Does the Area of Interest Appear to be in Compliance?	Yes	Yes

Example-2: 20M contest station

- 1,500w PEP SSB radio
- Beam antenna
 - 9dB gain
 - Direction?
 - 100-feet of RG8
- 20M (14.2MHz)

Ex. 2 Calculation Prep

- (Using the Lake Washington Ham Club calculator)
- Average Power:
 - 1,500w PEP transmitter
 - RG8 coax loss at 14.2MHz = 0.463dB
 - 1,348.2 Watts at antenna
 - Times duty cycle (20%)=<u>269.64w</u> "Average"
- Antenna gain 9dB

Results 2

Parameters

Average Power at Antenna (watts): 269.64
Antenna Gain (dBi): 9
Operating Frequency (MHz): 14.2
Include Effects of Ground Reflections
Calculate
Results for a controlled environment:
Maximum Allowed Power Density (mw/cm ²): 4.4634
Minimum Safe Distance (feet): 6.4112
For an uncontrolled environment:
Maximum Allowed Power Density (mw/cm ²): 0.8927
Minimum Safe Distance (feet): 14.3359

Example 3: 2M in car

- 2M FM Mobile station in Auto
- 50 Watts FM (50% duty)
- 5/8-wave roof antenna
 - 4.4dBi gain

Example 3 Values

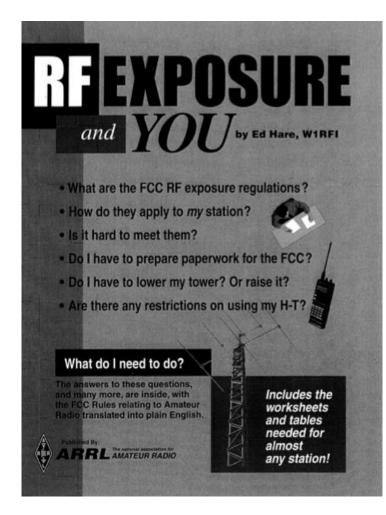
• Using Ham Radio School Excel sheet:

Enter Values:				
Transmitter PEP output (W)	50	watts		
Feedline length (ft)	5	feet		
Feedline loss / 100 ft (dB)	0.7	dB		
Operating Mode (select)	FM	mode		
Transmit On Percentage (0 to 1)	0.5			
Transmitting Frequency (MHz)	147	MHz		
Average Power into Antenna =	24.80	watts		
(Calculated no value entry)				
Antenna Gain (dBi)	4.4	dBi		
Distance to Area of Interest (ft)	8.7	feet		
Antenna Gain (dBi)				

Example 3 Results

• A pedestrian needs to be 8.7 feet from your antenna to be under 0.2mw/cm-sq.

		Controlled MPE	Uncontrolled MPE	
Power Density =	0.0773 mW/cm^2	1.0000	0.2000	mW/cm^2
	In compliance?	Yes	Yes	
Power Density with Reflection =	0.1979 mW/cm^2	1.0000	0.2000	mW/cm^2
	In compliance?	Yes	Yes	


Run Your Own Calculations!

- Exercise the online calculator of your choice:
 - To know how close folks can be
 - For all of your antennas, frequencies, modes and power levels.
 - Print and keep the results
 - Keep fresh beer cold for the FCC inspector

Need Help?

- ARRL Technical Information Service:
- http://www.arrl.org/technical-informationservice
- tis@arrl.org

FREE BOOK PDF (1998 W1RFI)

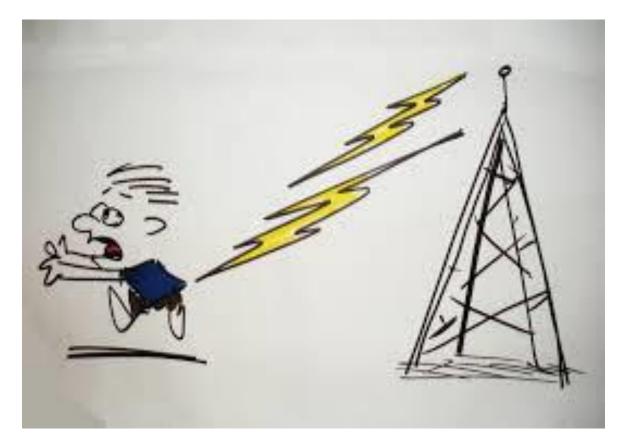
Review Of Our Goals

- Responsibility to make sure we do not overexpose ourselves or others to RF.
 - Restrict access to antenna
 - Mount antennas higher
 - Talk for shorter periods
 - Lower power
 - Pause operating when folks near antenna

Summary

- Read *R&O 19-126* and *OET-65* (yawn).
- Read Ed's Book *RF Exposure And You*, noting recent changes in R&O and updated OET-65 dope.
- Note your station and antenna setup.
- Calculate RF fields for the bands and modes you use
 - Use online calculator, or
 - Use OET-65 formula
 - If out of compliance, remedy
- It is good to create a document showing your compliance, just in case the FCC stops by for a beer.

LINKS


- http://www.arrl.org/rf-exposure
- <u>https://docs.fcc.gov/public/attachments/FCC-19-</u> <u>126A1.pdf</u>
- <u>https://www.fcc.gov/general/radio-frequency-safety-0</u>
- <u>https://transition.fcc.gov/Bureaus/Engineering T</u> <u>echnology/Documents/bulletins/oet65/oet65b.p</u> <u>df</u>
- <u>http://www.arrl.org/files/file/Technology/RFsafet</u> <u>yCommittee/RF+Exposure+and+You.pdf</u>

Lets Discuss!

- Questions, comments, or corrections?
- w1dan@arrl.net

Thank you and Stay RF-Safe!

• Copyright Dan Brown W1DAN

